Advanced Quantum Mechanics

Q1. Advanced Physical Chemistry 2000, Q9

- a) Explain briefly why the *variational principle* is useful in quantum mechanics.
- b) Prove that for a trial wavefunction $\psi = \sum_n c_n \chi_n$, the expectation value of the energy,

$$\langle \mathsf{E} \rangle = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}$$

satisfies the equation

$$(E) - E_0 \ge 0$$
,

where E_0 is the lowest possible eigenvalue of \hat{H} (i.e. the true ground state energy), and where the non-degenerate, orthonormal functions cn satisfy the equation $\hat{H}\chi_n = E_n\chi_n$. [5]

[4]

c) Use the variational principle to show that the trial function $\psi(r) = Ne^{-\alpha r}$, with r in atomic units and normalisation constant N = $(\alpha^3/\pi)^{1/2}$, yields the following estimate for the ground state energy (also in atomic units) of a hydrogen-like atom of charge number Z.

$$\langle E \rangle = \frac{\alpha^2}{2} - \alpha Z$$

Use this expression to find the best estimate of the ground state energy of the H atom. [10]

How does the value you obtain compare with the true ground state energy of the H atom? [2]

[Note that for a spherically symmetric wavefunction the Hamiltonian for the H atom may be written (in atomic units)

$$\hat{\mathbf{h}} = -\frac{1}{2}\nabla^2 - \frac{Z}{r}$$
 with $\nabla^2 = \frac{1}{r}\frac{\partial^2}{\partial r^2}r$,

and that
$$\int_{0}^{\infty} x^{n} e^{-sx} dx = \frac{n}{s^{n+1}}$$
]

d) In atomic units the Hamiltonian for the He atom may be written

$$\hat{H} = \hat{h_1} + \hat{h_2} + \frac{1}{r_{12}}$$

where $\ddot{h_i}$ is the hydrogenic Hamiltonian for electron i, as defined in part c), but with r = r_i, and r₁₂ is the electron-electron separation.

A simple trial spatial wavefunction Ψ for the ground state of the He atom (i.e. the state of $1s^2$ configuration) can be written in terms of the normalised wavefunctions $\psi(r_1)$ and $\psi(r_2)$ of part c) as

$$\Psi = \psi(\mathbf{r}_1) \psi(\mathbf{r}_2) \equiv |1 2 \rangle \tag{1}$$

Derive an equation for <E> in terms of the parameter α .

[Note that <1 2 $|\frac{1}{r_{12}}|12$ = $\frac{5}{8}\alpha$.]

- e) Using your answer from part d), determine the best estimate of the ground state energy of the He atom in atomic units. What does the value of α you obtain suggest about the ground state wavefunction of He compared with that for the hydrogen atom? [5]
- f) Explain whether a trial wavefunction of a simple product form, such as that given in equation
 (1), could ever be an eigenfunction of the Hamiltonian for the He atom. [5]

Q2. Advanced Physical Chemistry 2001, Q5B

The wavefunction of an electron in the 2s orbital of a hydrogen atom may be written

$$\psi = N(2-\rho) e^{-\rho/2}$$

where N is a normalisation constant and r $(=r/a_0)$ is the distance of the electron from the nucleus, in units of the Bohr radius a_0 .

a) Sketch the variation of ψ with ρ , locating the positions of any radial nodes. [3]

- b) Sketch the probability of finding the electron at a distance ρ from the nucleus. [3]
- c) Show that the most probable distance is given by ρ = 5.24.

You may find the following useful: $x^3 - 8x^2 + 16x - 8 = (x-2)(x^2-6x+4)$

d) Calculate the average distance ρ of the electron from the nucleus.

You may find the following useful: $\int_{0}^{\infty} e^{-ax} dx = \frac{n!}{a^{n+1}}$

e) The virial theorem states that for a particle subject to a potential energy of the form $V \propto r^s$, the mean kinetic energy $\langle T \rangle$ and the mean potential energy $\langle V \rangle$ are related by

$$\frac{1}{2}$$
s =

- i) Determine <V> and <T> for a 2s electron in terms of the Rydberg constant, R. [4]
- ii) Determine the classical turning point of the motion of a 2s electron, using [4]

$$R = \frac{e^2}{8\pi \varepsilon_0 a_0} \qquad \text{and} \qquad V = -\frac{e^2}{4\pi \varepsilon_0 r}$$

[10]

[8]

 iii) Comment on the fact that the electron can exist in regions of space where its potential energy exceeds its total energy.

Q3 Advanced Physical Chemistry 2002, Q7

a) Write down the Hamiltonian, $\hat{H}_0(x)$, for a simple harmonic oscillator of mass m and force constant k. Give the result for the corresponding energy levels, in terms of the oscillator frequency $\omega_0 = [k/m]^{1/2}$. [4]

What is the minimum energy the oscillator may possess, and why is it non-zero? [4]

The Hamiltonian for a pair of identical coupled oscillators may be expressed as

$$\hat{H}(x) = \hat{H}_0(x_1) + \hat{H}_0(x_2) + \lambda \hat{V}$$

where the perturbation $\hat{V} = k x_1 x_2$, and λ is a constant ($0 \le \lambda < 1$). For a single oscillator, the only non-zero matrix elements of x_i are $\langle v_i+1 | x_i | v_i \rangle = (\hbar/2m\omega_0)^{1/2} (v_i+1)^{1/2}$.

b) Within second-order perturbation theory, the ground state energy of the system is given approximately by

 $E = E_0 + E'$, where $E' = -\lambda^2 \sum_{n(\neq 0)} \frac{|\langle n|\hat{V}|0\rangle|^2}{E_n - E_0}$

Here $|0\rangle$ and $|n\rangle$ denote respectively the ground state and excited states for $\lambda = 0$, with corresponding energies E_0 and E_n . The states $|0\rangle$ and $|n\rangle$ may be expressed in product form $|v_1v_2\rangle = |v_1\rangle|v_2\rangle$, with $|v_i\rangle$ referring to a single harmonic oscillator. Show that within perturbation theory,

$$E = \hbar \omega_0 (1 - \frac{\lambda^2}{8})$$
. [8]

[4]

c) By transforming the coordinates from x_1 and x_2 to $y_+ = (x_1+x_2)/2$ and $y_- = (x_1-x_2)/2$, show first that

$$\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} = \frac{1}{2} \left(\frac{\partial^2}{\partial y_+^2} + \frac{\partial^2}{\partial y_-^2} \right).$$

Using this, show that \hat{H} becomes separable: $\hat{H} = \hat{H}_{*}(y_{*}) + \hat{H}_{-}(y_{-})$, where \hat{H}_{*} and \hat{H}_{-} each has harmonic oscillator form. [10]

Hence obtain an exact expression for the eigenvalues of \hat{H} .

Show that to leading order in λ^2 , the ground state energy E reduces to the result obtained from second-order perturbation theory. [4]

[For small x,
$$(1+x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2$$
.]