Kinetics Problem Sheet

1. The initial rate of the reaction $CO + Cl_2 \rightarrow COCl_2$ at 300 K is given for different initial pressures of the reactants. Determine the rate law.

2. The data below refer to the rearrangement of N-bromoacetanilide (A) to 4-bromoacetanilide in chlorobenzene at 288 K. Determine the order of the reaction with respect to A and the rate constant, *k*. [If you are interested, you can also deduce the work patterns of the scientist!].

time / h
$$0.0$$
 4.0 10.5 23.0 31.5 45.0 48.0 $10^2[A]$ / mol dm⁻³ 1.00 0.907 0.762 0.566 0.466 0.348 0.321

3. Iodine was allowed to react with an equimolar amount of propanone in acidic solution. The transmittance of the solution at a concentration where only I₂ absorbs was followed as a function of time. Determine the order of the reaction and, if possible, obtain the rate constant.

4. A proposed mechanism for the reaction of HCl with propene is shown below. Determine the rate law for this mechanism.

$$2HCI \stackrel{K_1}{\rightleftharpoons} (HCI_2)$$

$$HCI + CH_3CH = CH_2 \stackrel{K_2}{\rightleftharpoons} complex$$

$$(HCI)_2 + complex \stackrel{k \text{ (slow)}}{\rightarrow} CH_3CHCICH_2 + 2HCI$$

5. The mechanism originally proposed for hte pyrolysis of ethanal was as follows:

$$CH_{3}CHO \xrightarrow{k_{1}} CH_{3} + CHO$$

$$CH_{3} + CH_{3}CHO \xrightarrow{k_{2}} CH_{4} + CH_{3}CO$$

$$CH_{3}CO \xrightarrow{k_{3}} CH_{3} + CO$$

$$2CH_{3} \xrightarrow{k_{4}} C_{2}H_{6}$$

Apply the steady-state approximation to the radicals CH_3 and CH_3CO to obtain the rate law predicted by this mechanism ($v = d[CH_4]/dt$). Ignore the fate of CHO.

6. The enzyme catalase catalyses the decomposition of hydrogen peroxide. The initial rate of reaction was determined as a function of the initial peroxide concentration $[H_2O_2]_0$.

Determine v_{max} and K_{M} . Given that the concentration of catalase is 4.0 x 10⁻⁹ mol dm⁻³, calculate the turnover number, k_{cat} .

7. The major reactions in the pyrolysis of ethane to produce ethene and hydrogen at 1100 K are

$$C_2H_6 \stackrel{k_1}{ o} 2CH_3$$
 Initiation
$$CH_3 + C_2H_6 \stackrel{k_2}{ o} CH_4 + C_2H_5$$
 Initiation
$$C_2H_5 \stackrel{k_3}{ o} H + C_2H_4$$
 Propagation
$$H + C_2H_6 \stackrel{k_4}{ o} H_2 + C_2H_5$$
 Propagation
$$2C_2H_5 \stackrel{k_5}{ o} C_4H_{10}$$
 Termination

- (a) Show that the steady-state concentration $[CH_3]$ is given by $2k_1/k_2$.
- (b) Determine the steady-state concentration of C_2H_5 .
- (c) Determine the rate law for the production of ethene.
- (d) Calculate the chain length.