Molecular Energy Levels

[Useful conversion ratio for rotational energy levels: $h/8\pi^2 c = 16.8576$ amu Å² cm⁻¹]

- Q 1.1 A sample of nitrogen gas is confined to a cubic volume 10 cm x 10 cm x 10 cm at 300 K. Write down the expression for the translational energy levels of a nitrogen molecule, using the three quantum numbers n_x , n_y and n_z . Calculate the separation between the lowest two translational levels taking m(N) = 14.0. Given that k_BT at room temperature is about 208 cm⁻¹ (or 0.414 x 10⁻²⁰ J molecule⁻¹), deduce what you can about the quantised motion of the nitrogen molecules.
- Q 1.2 Some consecutive rotational energy levels of $H^{35}Cl$ in the v = 0 level occur at 125.201, 208.584, 312.716 and 437.534 cm⁻¹. Identify the *J* value for each level; hence deduce the moment of inertia and bond length of the molecule. What is the degeneracy of each level and to what does this degeneracy correspond physically? [$m(^{35}Cl) = 34.969 a.u., m(^{1}H) = 1.0078 a.u.$].
- Q 2.1 The vibrational levels of the diatomic molecule sodium iodide (NaI) lie at the following wavenumbers: 142.8, 427.3, 710.3, 991.8 cm⁻¹.

Deduce the values for the constants ω_e and $x_e\omega_e$ and the zero point energy.

- Q 2.2 The molecules O₂ and N₂ have harmonic vibrational wavenumbers of 1580 and 2359 cm⁻¹, respectively. Calculate the bond force constants for these two molecules and comment on their respective values. $[m(^{16}O) = 15.995 \text{ a.u.}, m(^{14}N) = 14.003 \text{ a.u.}].$
- Q 2.3 The vibrational parameters for H³⁵Cl are $\omega_e = 2990.95 \text{ cm}^{-1}$ and $\omega_e x_e = 52.819 \text{ cm}^{-1}$. Calculate the ³⁵Cl to ³⁷Cl isotope shift for the *v*=1–0 vibrational interval for both HCl and DCl. Can you explain why one is larger than the other?

Estimate the dissociation energies D_0 for H³⁵Cl and H³⁷Cl, explaining clearly why the two values are not the same. $[m(^{37}Cl) = 36.966 \text{ a.u.}, m(^{2}H) = 2.0141 \text{ a.u.}$ See also Q 1.2].

Q 3.1 The following are observed wavenumbers of lines in the 0-0 band of an electronic spectrum of BeO.

J	R(<i>J</i>)	P(<i>J</i>)
0	21199.8	
1	21202.9	21193.3
2	21205.7	21189.9
3	21208.5	21186.4
4	21211.1	21182.7
5	21213.6	21178.9
6	21215.6	21174.8
7		21170.7

The transitions in the R branch obey the selection rule $\Delta J = +1$ and those in the P branch $\Delta J = -1$. How can you confirm the assignment of the rotational numbering? What are the *B* values for the two vibrational levels?

- Q 3.2 a) The molecule Br_2 has a dissociation energy $D_0 = 1.971$ eV. Its vibrational wavenumber is 323 cm⁻¹. Calculate the value of the dissociation energy D_e in cm⁻¹ (1 eV = 8065 cm⁻¹).
 - b) A series of absorption bands is observed in the electronic spectrum of O_2 in the ultraviolet region. The origins of the first three bands are at 49363, 50 046 and 50 710 cm⁻¹. Sketch an energy level diagram for the transitions (all of which originate from the v = 0 level of the ground state), and estimate the dissociation energy D_0 of the excited state. The dissociation energy is actually 7194cm⁻¹. Comment.
- Q 4.1 The first excited electronic state of a molecule lies 200 kJ mol⁻¹ above the ground state. Using the Boltzmann distribution law and the fact that at room temperature *RT* is roughly 2.5 kJ mol⁻¹, find the proportion of molecules in this excited state.
- Q 4.2 For CO, the spacing between vibrational levels 0 and 1 is around 2100 cm⁻¹. What proportion of molecules are in the state with v = 1 at room temperature? Would you expect to see the transition $v = 2 \leftarrow 1$ in the absorption spectrum?
- Q 4.3 The molecule BF has a rotational constant of 1.52 cm⁻¹. Which will be the most highly populated rotational level at 500 K?