
Outline of data analysis

The alignment/orientation is described using the formalism developed by Rakitzis and Zare [1].
The starting point is to expand the spatial distribution of the photofragment angular momentum
J in the molecular frame as a sum over modified spherical harmonics Ck

q (θ, φ).

P (θ, φ) =
2J∑

k=0

k∑
q=−k

A(k)
q Ck

q (θ, φ) (1)

Note that the modified spherical harmonics are related to the spherical harmonics by

Ck
q (θ, φ) = [4π/(2k + 1)]1/2Y k

q (θ, φ) (2)

In Equation (1), θ and φ are the polar angles relative to a z axis lying along the photofragment
velocity vector v and an x axis lying in the plane of v and the photolysis polarisation vector
εphot. It is therefore valid only for a fixed angle θε between these two vectors. In order to obtain
a general expression for the angular momentum polarisation that includes the angular scattering
distribution of the photofragments, we can break up Equation (1) into a contribution from pure
parallel transitions, a contribution from pure perpendicular transitions, and interference terms
between the two. To achieve this separation we introduce a set of alignment parameters a

(k)
q (poln),

which are related to the A
(k)
q as follows:

A
(k)
0 = [(1 + β) cos2 θεa

(k)
0 (‖) + (1− β/2) sin2 θεa

(k)
0 (⊥)]/[1 + βP2(cos θε)] (3)

A
(k)
1 = sin θε cos θεa

(k)
1 (‖,⊥)/[1 + βP2(cos θε)] (4)

A
(k)
2 = (1− β/2) sin2 θεa

(k)
2 (⊥)/[1 + βP2(cos θε)] (5)

with A
(k)
q = (−1)qA

(k)∗
−q .

The a
(k)
q (‖) describe contributions to the alignment from processes involving pure parallel tran-

sitions from the ground state and the a
(k)
q (⊥) from perpendicular transitions, with the a

(k)
q (‖,⊥)

arising from interference between the two types of process. For terms up to k = 2, the details
of this separation are all described in reference [1]. At this point we have an expression for the
molecular frame angular momentum alignment (Equation (14) of reference [1] for moments up to
k = 2). To obtain an expression for the measured distribution, we need to correct each term in
this equation for the detection sensitivity, which will depend on details of the experiment such as
the REMPI transition chosen to detect the fragments and the polarisation of the probe light. For
comparison with experimental data, we also need to transform the expression into a laboratory
frame. For imaging experiments the most convenient lab frame has z lying along the time-of-flight
direction, and x in the plane of z and the photolysis polarisation. We can then define three sets of
angles:

(Γ, 0) define the photolysis polarisation relative to the lab z axis.
(∆,Φ) define the probe polarisation relative to the lab z axis.
(Ω,Θ) define the product velocity v relative to the lab z axis.

Four commonly-used geometries for measuring alignment are:

1. HHo, pump and probe lasers propagating at right angles, both polarised in image plane
(Γ = π/2, ∆ = π/2, Φ = π/2).
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2. HVo, pump and probe lasers propagating at right angles, pump laser polarised in image
plane, probe laser polarised perpendicular to image plane (along TOF axis) (Γ = π/2, ∆ = 0,
Φ = 0).

3. HHc, pump and probe lasers counterpropagating, both polarised in image plane (Γ = π/2,
∆ = π/2, Φ = 0).

4. HVc, pump and probe lasers counterpropagating, pump laser polarised in image plane, probe
laser polarised perpendicular to image plane (Γ = π/2, ∆ = 0, Φ = 0)

After some manipulation, which involves using results from above, determining expressions for
transforming between the lab frame and molecular frame coordinates, and extending the expressions
in Reference 1 to include terms up to k = 4, the final expression for the measured signal intensity
in terms of the a

(k)
q (poln) parameters is:

I =1 + cβC20(γ)+

s1

{
(1− β/2)a(1)

0 (perp)C10(δ)C10(γ) +
√

2Re[a(1)
1 ]C11(δ)C11(γ)cosφ + c

√
8/3Im[a(1)

1 ]C11(δ)C21(γ) sinφ

}
+

s2

{
(1/3)(1 + β)a(2)

0 (‖) + 2(1− β/2)a(2)
0 (⊥)C20(δ) + c(2/3)[(1 + β)a(2)

0 (‖)− (1− β/2)a(2)
0 (⊥)]C20(δ)C20(γ)

+ c
√

8/3Re[a(2)
1 ]C21(δ)C21(γ) cos φ +

√
8/3Im[a(2)

1 ]C21(δ)C21(γ) sinφ + c
√

32/3(1− β/2)a(2)
2 (⊥)C22(δ)C22(γ) cos 2φ

}
+

s3

{
(1− β/2)a(3)

0 (⊥)C30(δ)C30(γ) +
√

2Re[a(3)
1 ]C31(δ)C11(γ) cos φ + c

√
8/3Im[a(3)

1 ]C31(δ)C21(γ) sinφ

+ c
√

32/3(1− β/2)a(3)
1 (⊥)C32(δ)C32(γ) cos 2φ

}
+

s4

{
(1/3)[(1 + β)a(4)

0 (‖) + 2(1− β/2)a(4)
0 (⊥)]C40(δ) + c(2/3)[(1 + β)a(4)

0 (‖)− (1− β/2)a(4)
0 (⊥)]C40(δ)C20(γ)

+ c
√

8/3Re[a(4)
1 ]C41(δ)C21(γ) cos φ +

√
8/3Im[a(4)

1 ]C41(δ)C21(γ) sinφ + c
√

32/3(1− β/2)a(4)
2 (⊥)C42(δ)C22(γ) cos 2φ

}
(6)

A number of quantities appearing in this equation require explanation:

1. The angles γ, δ, and φ are determined from

cos γ =cos Ω cos Γ + sinΩ sin Γ cos Θ
cos δ =cos Ω cos ∆ + sin Ω sin∆ cos (Θ− Φ)

cos φ =
{
sin2 Ω cos Γ cos ∆ + sin Γ sin∆ cos Φ− sinΩ cos Ω(sin∆ cos Γ cos (Φ−Θ) + sinΓ cos ∆ cos Θ)−

sin2 Ω sinΓ sin∆ cos (Φ−Θ) cos Θ
}
/(sin γ sin δ)

sinφ =
{
cos Ω sin Γ sin∆ sinΦ− sinΩ(sin∆ cos Γ sin (Φ−Θ) + sinΓ cos ∆ sinΘ)

}
/(sin γ sin δ)

(7)

2. The sk are REMPI sensitivity parameters that depend on the J values of the initial, interme-
diate and final states in the REMPI transition used to ionize the photofragments. References
to papers describing how to calculate these are given in [1] on page 3345.

3. c is a constant equal to 1 for experimental geometries in which the pump laser is linearly
polarised, and -1/2 for geometries in which the pump laser is circularly polarised.
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Equation 6 describes the full 3D distribution of the detected photofragments. To obtain an expres-
sion for a velocity-map image, we simply substitute in the appropriate values of the angles Γ, ∆
and Φ to describe the experimental geometry, and then integrate the distribution over the z (TOF)
axis. This can generally be done analytically (though using Mathematica is far preferable to trying
to do it by hand!) by using one or other of the Jacobians

dz =− v sinΩdΩ

dz =v/(v2 − r2)1/2dv
(8)

where v is the product speed and r is its projection on to the image plane. For a sliced image no
integral is required; we simply set Ω = π/2. The good news is that evaluating Equation 6 for a
specific geometry generally leads to a greatly simplified expression. In the current study, involving
the 157 nm dissociation of O2, the situation is further simplified by the fact that a pure parallel
transition is involved, such that only the a

(2)
0 (‖) and a

(4)
0 (‖) alignment parameters are non-zero. For

example, the resulting expressions for sliced images using the four experimental geometries defined
above are:

IHHo

[
sliced) =(

3
2
− 3

16
s2a
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0 (‖)− 3
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s4a

(4)
0 (‖)

]
+

[
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4
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]
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IHHc(sliced) =
[
3
2
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16

s2a
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s4a
(4)
0 (‖)

]
+

[
3
2

+
3
2
s2a
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0 (‖) +
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9
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IHVc(sliced) =IHVo(sliced)

(9)

Now that we have analytical expressions for the images measured in each experimental geometry
used, we can determine the alignment parameters a

(k)
q () by carrying out a best-fit to the experi-

mental data. To speed up computation, we reduce the 2D fit to a series of 1D fits. This is achieved
by recognising the fact that for images measured with linearly polarised pump and probe light, the
angular dependence may be expanded as a Fourier cosine series. Only even terms are non-zero.

I(r, φ) = c0(r) + c2(r) cos 2φ + c4(r) cos 4φ + c6(r) cos 6φ (10)

For O(1D2 detected via (2+1)REMPI, only terms in the sum up to n = 6 need be retained. The
Fourier coefficients cn(r), which are functions of the radial coordinate r of the image (i.e. the
projection of the photofragment velocity onto the image plane), may be extracted directly from the
experimental images I(r, φ) by carrying out the appropriate integrals over the angular coordinate
φ.

cn(r) = N

∫ 2π

0
I(r, φ) cos (nφ)vp dφ (11)

where the normalization constant N is equal to 1 when n = 0 and 2 when n > 0. For the
geometries employed, it is straightforward to identify the Fourier coefficients from the analytical
expressions for the images given in Equation (9) by matching terms with Equation (10). By
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carrying out a simultaneous fit of these analytical expressions for the Fourier coefficients to the
corresponding experimentally measured quantities cn(r), with the a

(k)
q as fitting parameters, the

alignment parameters may be determined.
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